Addition and Subtraction of Homothety Classes of Convex Sets

نویسنده

  • Valeriu Soltan
چکیده

Let SH denote the homothety class generated by a convex set S ⊂ R: SH = {a + λS | a ∈ R, λ > 0}. We determine conditions for the Minkowski sum BH + CH or the Minkowski difference BH ∼ CH of homothety classes BH and CH generated by closed convex sets B,C ⊂ R to lie in a homothety class generated by a closed convex set (more generally, in the union of countably many homothety classes generated by closed convex sets). MSC 2000: 52A20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

On the Homothety Conjecture ∗

Let K be a convex body in R and δ > 0. The homothety conjecture asks: Does Kδ = cK imply that K is an ellipsoid? Here Kδ is the (convex) floating body and c is a constant depending on δ only. In this paper we prove that the homothety conjecture holds true in the class of the convex bodies B p , 1 ≤ p ≤ ∞, the unit balls of l p ; namely, we show that (B p )δ = cB p if and only if p = 2. We also ...

متن کامل

Convex sets with homothetic projections

Nonempty sets X1 and X2 in the Euclidean space R n are called homothetic provided X1 = z+λX2 for a suitable point z ∈ R n and a scalar λ 6= 0, not necessarily positive. Extending results of Süss and Hadwiger (proved by them for the case of convex bodies and positive λ), we show that compact (respectively, closed) convex sets K1 and K2 in R n are homothetic provided for any given integer m, 2 ≤ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006